The Stannides La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆: A New Structure Type with a Complex Three-Dimensional [Pd₄Sn₆] Polyanion

Dirk Niepmann, Rainer Pöttgen,^{*,†} Bernd Künnen, and Gunter Kotzyba

Anorganisch-Chemisches Institut, Universität Münster, Wilhelm-Klemm-Strasse 8, D-48149 Münster, Germany

Bernd D. Mosel^{*,‡}

Institut für Physikalische Chemie, Universität Münster, Schlossplatz 4/7, D-48149 Münster, Germany

Received September 13, 1999. Revised Manuscript Received October 18, 1999

The new stannides La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆ have been synthesized in quantitative yield by reacting the elements in an arc-melting furnace and subsequent annealing at 970 K. Their structures were determined from single-crystal X-ray data: Pnma, a = 1685.5(2) pm, b = 462.37(9) pm, c = 1562.6(2) pm, wR2 = 0.0788, 1561 F² values, 80 variables for $La_3Pd_4Sn_6$, a = 1678.2(3) pm, b = 458.9(1) pm, c = 1556.1(3) pm, wR2 = 0.0800, 1539 F^2 values, 81 variables for Ce₃Pd₄Sn₆, and a = 1673.8(4) pm, b = 457.3(1) pm, c =1554.1(3) pm, wR2 = 0.0954, 1529 F^2 values, 81 variables for Pr₃Pd₄Sn₆. Striking structural motifs in these structures are distorted PdSn₅ square pyramids which are condensed via common tin atoms and via Sn-Sn bonds forming a three-dimensional infinite $[Pd_4Sn_6]$ polyanion that is characterized by strong Pd-Sn (256-285 pm) as well as Sn-Sn (302-336 pm) interactions. Six tin sites occur in the Ce₃Pd₄Sn₆ structure. Only the Sn4 atoms have no Sn-Sn contacts. The rare earth atoms fill distorted pentagonal and hexagonal channels within the polyanion. The three crystallographically independent rare earth (RE) atoms have high coordination numbers: 5Ce + 7Pd + 9Sn for Ce1, 4Ce + 6Pd + 9Sn for Ce2, and 5Ce + 7Pd + 9Sn for Ce3. Magnetic susceptibility measurements indicate Pauli paramagnetism for La₃Pd₄Sn₆ and Curie–Weiss behavior for Ce₃Pd₄Sn₆ (2.51(2) μ_B /Ce) and Pr₃Pd₄Sn₆ $(3.70(5) \mu_B/Pr)$. No magnetic ordering is detected down to 2 K. La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and $Pr_3Pd_4Sn_6$ are metallic conductors with specific resistivities at room temperature of 80 ± 20 $\mu\Omega$ cm (La₃Pd₄Sn₆), 65 \pm 20 $\mu\Omega$ cm (Ce₃Pd₄Sn₆), and 110 \pm 20 $\mu\Omega$ cm (Pr₃Pd₄Sn₆). The specific resistivity of Ce₃Pd₄Sn₆ shows a broad minimum near 16 K, possibly suggesting some Kondotype interactions. The ¹¹⁹Sn Mössbauer spectrum of $La_3Pd_4Sn_6$ shows two superimposed signals: a singlet at $\delta_2 = 1.88(2)$ mm/s with a line width of $\Gamma_2 = 0.88(2)$ mm/s and a second signal at $\delta_1 = 1.94(2)$ mm/s with a line width of $\Gamma_1 = 0.87(2)$ mm/s, subject to quadrupole splitting of $\Delta E_{Q1} = 1.11(2)$ mm/s. These two signals occur in a ratio of about 5:1 in agreement with the six different tin sites. The cerium and praseodymium stannides show very similar behavior.

Introduction

The location of the 4f level near the Fermi energy in cerium intermetallics can result in a variety of unusual physical properties such as long-range magnetic ordering, Kondo effects, magnetic ordering with anomalously high ordering temperatures, the coexistence of heavyfermion behavior and superconductivity or valence fluctuation behavior (see refs 1-3, and references therein). The whole bandwidth of such unusual electronic properties has been observed for the various

compounds in the ternary systems Ce-Ni-In(Sn) and Ce-Pd-In(Sn) (see refs 4-8, and references therein). Especially the Ce-Pd-Sn system exhibits several ternary stannides: equiatomic CePdSn⁹ (TiNiSi type),

[†] E-mail: pottgen@uni-muenster.de.

¹ E-mail: pottgene uni-muenster.de. ⁴ E-mail: mosel@uni-muenster.de. (1) Fujita, T.; Suzuki, T.; Nishigori, S.; Takabatake, T.; Fujii, H.; Sakurai, J. J. Magn. Magn. Mater. **1992**, 108, 35. (2) Szytula, A.; Leciejewicz, J. Handbook of Crystal Structures and Structures of Pare Farth Intermetallics, CRC Press: Boca Raton. 1994.

⁽³⁾ Nieuwenhuys, G. J. Heavy Fermions and Related Compounds. In Handbook of Magnetic Materials; Buschow, K. H. J., Ed.; Elsevier: (4) Kasaya, M.; Tani, T.; Iga, F.; Kasuya, T. J. Magn. Magn. Mater.

^{1988, 76/77, 278.}

⁽⁵⁾ Takabatake, T.; Teshima, F.; Fujii, H.; Nishigori, S.; Suzuki, T.; Fujita, R.; Yamaguchi, Y.; Sakurai, J.; Jaccard, D. Phys. Rev. B 1990, 41, 9607.

⁽⁶⁾ Fujii, H.; Inoue, T.; Andoh, Y.; Takabatake, T.; Satch, K.; Maeno, Y.; Fujita, T.; Sakurai, J.; Yamaguchi, Y. *Phys. Rev. B* **1989**, *39*, 6840.

⁽⁷⁾ Skolozdra, R. V.; Komarovskaya, L. P. *Izv. Akad. Nauk. SSSR Metally* **1988**, *2*, 214.

⁽⁸⁾ Brück, E.; van Sprang, M.; Klaasse, J. C. P.; de Boer, F. R. J. Appl. Phys. 1988, 63, 3417.
(9) Sakurai, J.; Yamaguchi, Y.; Nishigori, S.; Suzuki, T.; Fujita, T. J. Magn. Magn. Mater. 1991, 90/91, 422.

Table 1. Crystal Data and Structure Refinements for	r the	Orthorhombic Stannides	La ₃ Pd ₄ Sn ₆ ,	Ce ₃ Pd ₄ Sn ₆ ,	and Pr ₃ Pd ₄ Sn ₆
(Space	e Gro	oup <i>Pnma</i> . No. 62)			

	× 1 1		
empirial formula	$La_3Pd_4Sn_6$	$Ce_3Pd_4Sn_6$	$Pr_3Pd_4Sn_6$
molar mass	1542.18 g/mol	1545.81 g/mol	1560.47 g/mol
lattice constants	a = 1685.5(2) pm	a = 1678.2(3) pm	a = 1673.8(4) pm
(Guinier data)	b = 462.37(9) pm	b = 458.9(1) pm	b = 457.3(1) pm
	c = 1562.6(2) pm	c = 1556.1(3) pm	c = 1554.1(3) pm
	V = 1.2178(3) nm ³	$V = 1.1984(4) \text{ nm}^3$	$V = 1.1896(4) \text{ nm}^3$
formula units per cell	Z = 4	Z = 4	Z = 4
calculated density	8.48 g/cm ³	8.64 g/cm ³	8.71 g/cm ³
crystal size	$10 imes 20 imes 30 \mu \mathrm{m}^3$	$10 imes 20 imes 40 \mu m^3$	$10 \times 20 \times 30 \ \mu m^3$
transmission (max:min)	1.19	1.36	1.31
absorption coefficient	28.0 mm^{-1}	29.2 mm^{-1}	30.2 mm^{-1}
F(000)	2620	2632	2644
θ range	2 to 28°	2 to 28°	2 to 28°
range in <i>hkl</i>	\pm 21, 0 \leq k \leq 6, \pm 20	$-21\leq h\leq 3,\pm 5,\pm 20$	\pm 21, +5, \pm 20
total no. reflections	6027	3592	5906
independent reflections	1561 ($R_{\rm int} = 0.1808$)	1539 ($R_{\rm int} = 0.1230$)	1529 ($R_{\rm int} = 0.1447$)
reflections with $I \ge 2\sigma(I)$	720	698	788
data/restraints/parameters	1561/0/80	1539/0/81	1529/0/81
goodness-of-fit on F ²	1.054	1.041	1.073
final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0366	R1 = 0.0384	R1 = 0.0374
	wR2 = 0.0515	wR2 = 0.0523	wR2 = 0.0659
indices (all data)	R1 = 0.1602	R1 = 0.1674	R1 = 0.1324
	wR2 = 0.0788	wR2 = 0.0800	wR2 = 0.0954
extinction coefficient	0.000059(5)	0.000048(4)	0.00006(1)
largest diff. peak and hole	6.85 and -6.07 e/A^3	4.91 and -5.92 e/A^3	5.19 and -4.53 e/Å^3

 $CePd_2Sn_2{}^{10,11}$ (CaBe_2Ge_2 type), $Ce_2Pd_2Sn^{12,13}$ (ordered U_3Si_2 type), and $Ce_8Pd_{24}Sn^{14,15}$ (Cu_3Au superstructure) order antiferromagnetically at Néel temperatures of 7, 0.5, 4.8, and 7.5 K, respectively. The stannides "Ce₄-Pd₇Sn₄" (structure yet unsolved)¹⁴ and CePd_{0.5}Sn₂¹⁴ (defect CeNiSi₂ type) show experimental magnetic moments of 2.53 $\mu_{\rm B}$ /Ce, respectively 2.60 $\mu_{\rm B}$ /Ce, compatible with trivalent cerium. Magnetic ordering, however, has not been observed down to 4.2 K.

In the course of our investigations on structureproperty relationships of intermetallic cerium compounds^{16–19} we have recently synthesized the stannide CeRhSn₂²⁰ which crystallizes with a new structure type. When searching for a possible isotypic compound with palladium as transition metal component, we obtained the stannide Ce₃Pd₄Sn₆ and the isotypic compounds La₃-Pd₄Sn₆ and Pr₃Pd₄Sn₆. Herein we report on the synthesis, the structure refinements, and the physical properties of these new stannides.

Experimental Procedures

Synthesis. Starting materials for the synthesis of La₃Pd₄-Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆ were ingots of lanthanum (Kelpin), of cerium (Johnson Matthey), and of praseodym (Kelpin), palladium powder (200 mesh, Degussa), and a tin

- (13) Chevaller, B.; Fourgeot, F.; Laffargue, D.; Etourneau, J.;
 Bourée, F.; Roisnel, T. *Physica B* 1997, *230–232*, 195.
- (14) Gordon, R. A.; DiSalvo, F. J. J. Alloys Compd. 1996, 238, 57.
 (15) Gordon, R. A.; DiSalvo, F. J. Z. Naturforsch. B 1996, 51, 52. (16) Pöttgen, R.; Borrmann, H.; Felser, C.; Jepsen, O.; Henn, R.;
 Kremer, R. K.; Simon, A. J. Alloys Compd. 1996, 235, 170.
- (17) Gordon, R. A.; DiSalvo, F. J.; Pöttgen, R.; Brese, N. E. J. Chem.
- Soc., Faraday Trans. 1996, 92, 2167.
- (18) Jones, C. D. W.; Gordon, R. A.; DiSalvo, F. J.; Pöttgen, R.;
 Kremer, R. K. J. Alloys Compd. 1997, 260, 50.
 (19) Pöttgen, R.; Hoffmann, R.-D.; Sampathkumaran, E. V.; Das,
 I.; Mosel, B. D.; Müllmann, R. J. Solid State Chem. 1997, 134, 326.

(20) Niepmann, D.; Pöttgen, R.; Künnen, B.; Kotzyba, G.; Rosenhahn, C.; Mosel, B. D. *Chem. Mater.* **1999**, *11*, 1597.

bar (Heraeus), all with stated purities better than 99.9%. In a first step the rare earth ingots were cut into small pieces under dried paraffin oil. The latter was washed off with dried (over sodium wire) *n*-hexane and the rare earth pieces were melted into buttons in an arc-melting furnace²¹ under an argon atmosphere. This premelting procedure minimizes a shattering of these elements during the strongly exothermic reactions with palladium and tin. The argon was purified before over titanium sponge and molecular sieves. In the second step, the lanthanoid buttons were arc-melted together with cold-pressed pellets (diameter 6 mm) of palladium powder and pieces of the tin bar in the ideal atomic ratio 3:4:6. The buttons were turned over and remelted at least four times to achieve homogeneity. The total weight losses during the arc-melting procedures were all smaller than 0.5 wt %. Finally, fragments of the melted ingots were enclosed in evacuated silica tubes and annealed at 970 K for 3 weeks.

The three stannides are stable in moist air over months. They are dark gray in polycrystalline form while the silvery single crystals exhibit metallic luster. The samples were routinely characterized by EDX analyses of polished ingots using a Leica 420 I scanning electron microscope with LaB_{6} , CeO₂, PrF₃, palladium, and tin as standards. The compositions were all close to the ideal values. No impurity elements heavier than sodium (Z = 11) could be detected. The analyses of the polished ingots in backscattering mode showed only the compositions La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆.

Structural Characterization. The samples were routinely characterized through their Guinier powder patterns using Cu Kal radiation and a quartz (a = 491.30 pm, c = 540.46 pm) as an internal standard. The patterns could completely be indexed on the basis of primitive orthorhombic cells with the lattice parameters listed in Table 1. To ensure correct indexing, the observed patterns were compared with calculated ones⁴ taking the positions of the refined structures.

Small irregularly shaped single crystals of La₃Pd₄Sn₆, Ce₃-Pd₄Sn₆, and Pr₃Pd₄Sn₆ could be isolated from the annealed samples by mechanical fragmentation. They were investigated on a Buerger precession camera to establish both symmetry and suitability for intensity data collection. The photographs showed primitive orthorhombic unit cells and the extinction conditions were compatible with space group Pnma (no. 62).

⁽¹⁰⁾ Selsane, M.; Lebail, M.; Hamadoui, N.; Kappler, J. P.; Noël, H.; Achard, J. C.; Godart, C. Physica B 1990, 163, 213.

⁽¹¹⁾ Lidström, E.; Ghandour, A. M.; Häggström, L.; Andersson, Y. J. Alloys Compd. 1996, 232, 95.

⁽¹²⁾ Gordon, R. A.; Ijiri, Y.; Spencer, C. M.; DiSalvo, F. J. J. Alloys Compd. 1995, 224, 101.

⁽²¹⁾ Pöttgen, R.; Gulden, Th.; Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.

⁽²²⁾ Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10.73.

Intensity data were recorded at room temperature by use of a four-circle diffractometer (CAD4) with graphite monochromatized Mo K α radiation ($\lambda = 71.073$ pm) and a scintillation counter with pulse–height discrimination. The scans were taken in the $\omega/2\theta$ mode and empirical absorption corrections were applied on the basis of ψ -scan data.

The structure of the cerium compound was determined first. The starting atomic parameters were deduced from an automatic interpretation of direct methods with SHELXS-97,²³ and the structure was successfully refined with anisotropic displacement parameters using SHELXL-97²⁴ (full-matrix least-squares on F^2). The refined positions of Ce₃Pd₄Sn₆ were then taken as starting parameters for the lanthanum and the praseodym compound.

The refinements readily converged to the residuals listed in Table 1 and subsequent difference Fourier syntheses revealed no significant residual peaks. All relevant crystallographic details are listed in Table 1. Atomic coordinates and interatomic distances are given in Tables 2 and 3.

As a check for the correct compositions, the occupancy parameters were varied in a separate series of least-squares cycles along with the displacement parameters. The refined occupancies are listed in Table 2. With the exception of the Pd1 position of $Ce_3Pd_4Sn_6$ and $Pr_3Pd_4Sn_6$ all sites were fully occupied within two standard deviations, and in the final cycles the ideal compositions were assumed. Since the single crystal of $Ce_3Pd_4Sn_6$ was selected from a sample of the starting composition Ce:Pd:Sn 3:3:6 (our first experiments were attempts to synthesize new 1:1:2 stannides), the small defect on one palladium site is comprehensible. The crystals of the lanthanum and the praseodym compound were taken from samples of the intended 3:4:6 compositions. Listings of the anisotropic displacement parameters and the structure factors are available.²⁵

Physical Property Investigations. The magnetic susceptibilities of polycrystalline pieces of La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆ were determined with a SQUID magnetometer (Quantum Design, Inc.) in the temperature range from 2 to 300 K with magnetic flux densities up to 5.5 T. The specific resistivities were measured on small irregularly shaped polycrystalline blocks (typical dimensions $1 \times 1 \times 2$ mm³) using a four-probe technique. Cooling and heating curves measured between 4.2 and 300 K were identical within the error limits, also for different samples. ¹¹⁹Sn Mössbauer spectroscopic experiments were performed at 300 K with a Ca^{119m}SnO₃ source on the same polycrystalline samples as used for the magnetic and electrical measurements. A palladium foil of 0.05 mm thickness was used to reduce the thin K X-rays concurrently emitted by the source.

Results and Discussion

Magnetic Properties. The temperature dependence of the magnetic susceptibility of $La_3Pd_4Sn_6$ is displayed in Figure 1. The susceptibilities were only weakly dependent on the external field, indicating only very small amounts of ferromagnetic impurities. The 1 and 3 T data were practically identical. The 3 T data are plotted in Figure 1. Down to about 50 K the susceptibilities are very small and nearly independent of temperature. The upturn below 50 K may be attributed to a minor degree of paramagnetic impurities, although our Guinier diagrams showed single phase $La_3Pd_4Sn_6$. The susceptibility at 300 K is $0.7(2) \times 10^{-9}$ m³/mol,

Table 2. Atomic Coordinates	and Isotropic Displacement
Parameters for La ₃ Pd ₄ Sn ₆ ,	Ce ₃ Pd ₄ Sn ₆ , and Pr ₃ Pd ₄ Sn ₆ ^a

atom	occupancy ^b	X	Z	$U_{ m eq}{}^c$
		La ₃ Pd ₄ Sn ₆		
La1	1.00(3)	0.1411(1)	0.8812(1)	88(4)
La2	0.99(3)	0.3508(1)	0.0172(1)	64(4)
La3	1.01(4)	0.3845(1)	0.7511(1)	108(4)
Pd1	1.00(4)	0.0113(2)	0.1214(2)	131(6)
Pd2	1.01(4)	0.0471(1)	0.4004(2)	86(6)
Pd3	0.99(4)	0.2825(1)	0.2329(2)	82(6)
Pd4	0.99(4)	0.2912(2)	0.5264(2)	108(6)
Sn1	0.99(3)	0.0258(1)	0.5829(2)	87(5)
Sn2	0.98(3)	0.1709(1)	0.1054(1)	78(5)
Sn3	0.99(4)	0.1890(1)	0.6636(2)	89(5)
Sn4	0.99(3)	0.2064(1)	0.3792(2)	77(5)
Sn5	1.00(4)	0.4430(1)	0.2303(2)	105(5)
Sn6	1.01(4)	0.4476(1)	0.5381(2)	97(5)
		Ce ₃ Pd ₄ Sn ₆		
Ce1	1.02(4)	0.1421(1)	0.8811(1)	90(4)
Ce2	0.99(4)	0.3504(1)	0.0175(1)	64(4)
Ce3	1.01(4)	0.3844(1)	0.7519(1)	93(4)
Pd1	0.92(3)	0.0107(2)	0.1215(2)	117(11)
Pd2	0.99(4)	0.0474(2)	0.4002(2)	96(7)
Pd3	0.98(4)	0.2827(2)	0.2333(2)	98(6)
Pd4	1.01(4)	0.2914(2)	0.5263(2)	101(7)
Sn1	1.00(4)	0.0259(1)	0.5815(2)	88(5)
Sn2	1.00(4)	0.1702(2)	0.1062(2)	87(6)
Sn3	1.00(4)	0.1888(2)	0.6631(2)	91(6)
Sn4	0.98(4)	0.2062(2)	0.3795(2)	82(6)
Sn5	0.98(4)	0.4433(2)	0.2307(2)	138(6)
Sn6	0.97(4)	0.4486(2)	0.5386(2)	103(6)
		Pr ₃ Pd ₄ Sn ₆		
Pr1	1.00(4)	0.1426(1)	0.8810(1)	106(4)
Pr2	0.99(4)	0.3498(1)	0.0166(1)	64(4)
Pr3	1.02(4)	0.3847(1)	0.7523(1)	112(4)
Pd1	0.92(4)	0.0095(2)	0.1224(2)	125(10)
Pd2	1.00(4)	0.0475(1)	0.3999(2)	98(5)
Pd3	1.01(4)	0.2823(1)	0.2327(2)	110(5)
Pd4	0.98(4)	0.2922(1)	0.5250(2)	112(6)
Sn1	1.00(4)	0.0262(1)	0.5808(2)	86(5)
Sn2	1.01(4)	0.1697(1)	0.1062(2)	99(5)
Sn3	1.01(4)	0.1893(1)	0.6624(2)	95(5)
Sn4	1.03(4)	0.2061(1)	0.3796(2)	93(5)
Sn5	1.00(4)	0.4428(1)	0.2298(2)	139(5)
Sn6	0.98(4)	0.4495(1)	0.5389(2)	119(5)
		. /		

^{*a*} All atoms occupy the Wyckoff site 4*c* (x1/4*z*) of space group *Pnma*. ^{*b*} The occupancy parameters were obtained in separate series of least-squares cycles. In the final cycles the ideal occupancies were assumed with the exception of the Pd1 sites of Ce₃Pd₄Sn₆ and Pr₃Pd₄Sn₆. ^{*c*} *U*_{eq} (pm²) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

indicating Pauli paramagnetism. This is in agreement with the metallic behavior discussed below.

In Figure 2 we present the temperature dependence of the inverse susceptibilities of Ce₃Pd₄Sn₆ and Pr₃Pd₄-Sn₆. Above 50 K we observe Curie–Weiss behavior with experimental magnetic moments of $\mu_{exp} = 2.51(2) \ \mu_{B}/$ Ce and $\mu_{exp} = 3.70(5) \ \mu_{B}/$ Pr. The experimental moment for Ce₃Pd₄Sn₆ compares well with the free ion value of $\mu_{eff} = 2.54 \ \mu_{B}$ for Ce³⁺. For Pr₃Pd₄Sn₆, the experimental moment is slightly higher than the value of $3.58 \ \mu_{B}$ for the free Pr³⁺ ion. The paramagnetic Curie temperatures (Weiss constant) of $\Theta = -27(2)$ K (Ce₃Pd₄Sn₆) and $\Theta = 3(2)$ K (Pr₃Pd₄Sn₆) were obtained by linear extrapolation of the high-temperature part of the $1/\chi \ vs T$ plot to $1/\chi = 0$. The strongly negative Weiss constant suggests antiferromagnetic ordering of the cerium compound at very low temperatures.

Below 50 K the inverse susceptibility of Ce₃Pd₄Sn₆ significantly deviates from Curie–Weiss behavior, indicating crystal field splitting of the $J = \frac{5}{2}$ ground state

⁽²³⁾ Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.

⁽²⁴⁾ Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.

⁽²⁵⁾ Details may be obtained from: Fachinformationzentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), by quoting the Registry numbers CSD-410987 (La₃Pd₄Sn₆), CSD-410988 (Ce₃Pd₄Sn₆), and CSD-410986 (Pr₃Pd₄Sn₆). E-mail: crysdata@fiz-karlsruhe.de.

Table 3. Interatomic Distances (pm) in the Structures of La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆^a

				La ₃ P	d ₄ Sn ₆		.ome	Distur		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ce ₃ P	d_4Sn_6			40110	0031	40		Pr ₃ P	d_4Sn_6	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La1:	2	Pd4	343.5	Pd4:	1	Sn6	264.3	Ce1:	2	Pd4	340.9	Pd4:	1	Sn6	264.5	Pr1:	2	Pd4	338.1	Pd4:	1	Sn6	264.1
2 Sn4 345.7 1 Sn4 209.6 2 Pd1 342.1 2 Sn2 384.1 1 Sn3 274.3 1 Sn6 349.7 1 Sn3 348.1 2 Cc2 330.9 2 Pd3 384.1 2 Sn4 348.1 2 Pn3 384.1 1 Sn3 348.1 2 Pn3 384.1 1 Sn3 348.1 2 Pn3 385.7 Sn1 Sn4 Sn1 2 Sn5 375.7 Sn1 Pd1 486.4 1 Pn3 385.7 1 Fd4 485.7 1 Pd2 281.5 1 Pd1 486.4 1 Pn3 385.7 1 La3 487.9 1 Cc3 387.5 1 Pd1 387.5 2 Sn1 387.9 1 Pd3 387.5 1 Pd1 286.1 1 Pd1 386.1 1 Pd1 386.1 1	2411	$\tilde{2}$	Pd1	345.7	1 4 11	2	Sn2	269.8	0011	$\tilde{2}$	Sn4	342.8	1 4 11	2	Sn2	268.8		$\tilde{2}$	Sn4	341.3		1	Sn4	268.0
1 Sn3 349.5 1 Sn4 347.9 1 Sn3 273.8 1 Sn4 346.1 2 Ce2 330.9 1 Sn3 348.6 2 Ce2 330.9 1 Sn3 348.6 1 Ce2 330.1 1 Sn3 348.6 1 Ce2 348.7 1 Sn3 348.6 1 Ce2 348.7 1 Ce3 341.1 1 Sn3 348.6 1 Ce3 341.1 1 Sn3 348.6 1 Ce3 341.1 1 Sn3 367.6 1 Ce3 347.7 2 Sn3 367.6 1 Ce3 347.7 1 Ce3 357.6 1 Ce4 468.7 1 Ce3 351.5 1		2	Sn4	345.7		1	Sn4	270.7		2	Pd1	344.2		1	Sn4	269.6		2	Pd1	342.1		2	Sn2	268.8
1 Sn6 349.7 2 La2 333.0 1 Sn3 348.1 2 Cel 30.9 2 Prd3 38.1 2 Prd3 38.1 1 Sn2 334.3 S1 2 La3 384.5 2 Cel 30.9 1 1 S33.0 1 Prd3 28.7 2 Sn6 30.8 1 Prd2 28.1.5 2 Sn6 30.7 Sn1 Prd1 40.0 2 Sn5 30.5 1 Prd1 40.0 2 Sn5 30.5 1 Prd1 40.0 2 Prd2 30.1 1 <		1	Sn3	349.5		1	Sn3	275.0		1	Sn6	347.9		1	Sn3	273.8		1	Sn6	346.4		1	Sn3	274.3
2 Pd3 381.8 2 Lai 348.6 2 Pel3 348.6 2 Pel7 388.7 1 Sn2 354.0 1 A3 88.7 1 Sn2 353.5 1 Co3 341.1 1 Sn2 387.6 Sn1:2 2 Sn6 387.1 1 Pel2 281.5 2 Sn6 387.1 Sn1 2 Sn6 387.1 1 Pel2 281.5 1 Lai 412.4 1 Sn3 302.6 1 Ce2 408.7 1 Pel2 281.5 1 Pel2 418.5 2 Sn3 320.5 1 Pel2 418.5 2 Sn3 320.5 1 Pel2 418.5 1 Pel2 418.5 1 Pel2 315.5 1 Pel2 418.5 2 Sn3 320.5 1 Pel2 315.9 1 Pel2 316.5 1 Pel2 316.5 1 1		1	Sn6	349.7		2	La2	333.0		1	Sn3	348.1		2	Ce2	330.9		2	Pd3	348.1		2	Pr2	330.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Pd3	351.8		2	La1	343.5		2	Pd3	348.5		2	Ce1	340.9		1	Sn3	348.6		2	Pr1	338.1
2 Sh5 39.4 5 Sh5 37.4 Sh1 2 Sh6 386.7 1 Pd2 28.5 2 Sh6 386.7 1 Pd2 28.5 1 Sh5 301.5 1 Pd2 28.5 1 I Pd1 434.2 2 Sh6 301.5 1 Pd1 436.4 2 2 34.5 1 La3 457.9 2 Sh5 305.5 1 Pd1 453.9 1 Pd2 28.5 330.5 1 Pd3 451.9 2 Sh6 330.4 1 Pd3 451.9 2 Sh6 330.1 1 Pd3 330.1 <		1	Sn2	354.0	G 1	1	La3	384.8		1	Sn2	353.5	C 1	1	Ce3	384.1		1	Sn2	353.0	C 1	1	Pr3	385.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Sn5	359.4	Sn1:	2	PdZ	263.1		2	Sn5	357.7	Sn1:	2	PdZ	261.9		2	Sn5	357.6	Sn1:	2	PdZ	261.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 1	5110 L a 2	300.7 119 1		1	Fuz Sn2	207.3		2 1		300.7		1	Fuz Sn3	204.5		2 1	5110 Dr9	309.1 406.0		1	ruz Sn3	203.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Dd1	412.4		2	La2	302.0		1	Dd1	405.0		2	Co2	301.3		1	Pd1	400.0		2	Dr9	301.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	La3	457.9		2	Sn5	330.5		1	Ce3	453 6		2	Sn5	330.5		1	Pr3	451.9		2	Sn5	329.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	La1	462.4		ĩ	La2	334.0		2	Ce1	458.9		1	Ce2	332.3		2	Pr1	457.3		ĩ	Pr2	331.8
Lat: 2 Sn1 352.9 P 2 Sn1 352.9 2 2 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>		1	La3	479.3		1	La3	352.1		1	Ce3	479.4		1	Ce3	351.5		1	Pr3	478.8		2	Sn1	350.9
2 Snd 332.0 1 Pd1 26.3 32.9 1 Pd1 268.7 2 Snd 32.8 1 Pd1 269.3 32.9 1 Pd3 27.4 2 Pd4 33.0 1 Pd3 27.4 2 Pd4 33.0 1 Pd3 27.4 2 Pd3 37.4 2 Pd3 37.5 1 Pd3 37.4 2 Pd3 37.5 1 Pd3 37.4 2 Pd3 37.5 1 Pd3 37.5 2 Pd3 37.5 1 1 37.5 36.6 1 1 1 1 1 1	La2:	2	Sn1	327.5		2	Sn1	357.9	Ce2:	2	Sn1	325.1		2	Sn1	352.9	Pr2:	2	Sn1	324.5		1	Pr3	351.2
2 Sn3 32.0 1 Pd1 27.14 2 Pd4 33.0 1 Pd1 260.3 273.4 2 Pd4 33.0 1 Pd1 260.3 273.4 2 Pd4 33.0 1 Pd3 272.4 33.0 1 Na 33.0 2 Sa 32.2 1 Sa 33.1.8 2 Pd3 33.1.8 1 Pd3 33.1.7 1 Sa 33.2.7 2 Pd2 33.1.7 2 Pd2 33.1.7 2 Pd3 35.4.5 1 Ce1 33.5.4 1 Pd3 35.4.4 1 Pd3 35.4.4 1 Pd3 35.4.4 1 Pd4 26.6.6 Sa.3 2 Sa.6 1 Pd3 35.4.5 1 Pd3 25.4.4 2 Sa.7 2 27.3.4 1 Pd1 26.6.0 36.7 2 Sa.7 2 Sa.7 2 Sa.7 2 2 2 36.7 2 <td></td> <td>2</td> <td>Sn4</td> <td>330.5</td> <td>Sn2:</td> <td>2</td> <td>Pd4</td> <td>269.8</td> <td></td> <td>2</td> <td>Sn4</td> <td>328.2</td> <td>Sn2:</td> <td>1</td> <td>Pd1</td> <td>268.7</td> <td></td> <td>2</td> <td>Sn4</td> <td>326.1</td> <td>Sn2:</td> <td>2</td> <td>Pd4</td> <td>268.8</td>		2	Sn4	330.5	Sn2:	2	Pd4	269.8		2	Sn4	328.2	Sn2:	1	Pd1	268.7		2	Sn4	326.1	Sn2:	2	Pd4	268.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Sn3	332.0		1	Pd1	270.1		2	Sn3	329.1		2	Pd4	268.8		2	Sn3	328.5		1	Pd1	269.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	Pd4	333.0		1	Pd3	274.0		2	Pd4	330.9		1	Pd3	273.4		2	Pd4	330.1		1	Pd3	272.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	Sn2	333.0		2	Sn6	323.1		1	Sn1	332.3		2	Sn6	321.7		1	Sn1	331.8		2	Sn6	320.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Snl	334.0		1	Laz	333.0		1	Sn2	332.5		1	Ce2	332.5		1	Sn2	332.1		1	Pr2	332.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 1	Pu2 Dd2	341.2		2	Las Sn2	337.7		2 1	Pu2 Dd2	339.7		29	Ces Sn2	241 2		ے 1	Pu2 Dd2	330.7		2	Pro Sn2	334.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Pd3	356.0		2 1	I a1	342.0		1	Pd3	354.5		2 1		341.3		1	Pd2	355 /		2 1	Dr1	340.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Sn5	367.4	Sn3·	2	Pd3	259.8		1	Sn5	366.5	Sn3	2	Pd3	258.6		1	Sn5	366.0	Sn3.	2	Pd3	257.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	La1	412.4	5110.	ĩ	Pd4	275.0		1	Ce1	409.0	5110.	1	Pd4	273.8		1	Pr1	406.0	5110.	ĩ	Pd4	274.3
2 1.2.2 42.4 2 La3 2 SCa2 37.3 Ce3 2 SCa3 33.9 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 <th1< th=""> 1 <th1< td=""><td></td><td>1</td><td>La3</td><td>419.7</td><td></td><td>1</td><td>Sn1</td><td>302.6</td><td></td><td>1</td><td>Ce3</td><td>417.2</td><td></td><td>1</td><td>Sn1</td><td>301.5</td><td></td><td>1</td><td>Pr3</td><td>414.9</td><td></td><td>1</td><td>Sn1</td><td>301.0</td></th1<></th1<>		1	La3	419.7		1	Sn1	302.6		1	Ce3	417.2		1	Sn1	301.5		1	Pr3	414.9		1	Sn1	301.0
La3: 2 Sn2 337.7 C S Sn2 35.3 2 Sn3 9 Pr3: 2 Sn4 334.8 2 Sn5 335.9 Pr3: 2 Sn4 338.4 2 Sn5 335.0 2 Sn4 338.4 2 Sn5 335.0 2 Sn5 335.6 1 Pr1 348.6 1 Pr3 355.6 1 Pr3 355.6 1 Pr3 355.6 1 Pr3 355.6 1 Pr43 365.7 2 Pr3 355.6 1 Pr43 365.7 2 Pr3 355.6 1 Pr44 266.7 2 Pr3 355.6 1 Pr44 266.7 2 Pr3 356.7 2 Pr3 356.7 2 Pr3 365.7 2 Pr3 365.7 2 Pr3 365.7 <t< td=""><td></td><td>2</td><td>La2</td><td>462.4</td><td></td><td>2</td><td>La2</td><td>332.0</td><td></td><td>2</td><td>Ce2</td><td>458.9</td><td></td><td>2</td><td>Ce2</td><td>329.1</td><td></td><td>2</td><td>Pr2</td><td>457.3</td><td></td><td>2</td><td>Pr2</td><td>328.5</td></t<>		2	La2	462.4		2	La2	332.0		2	Ce2	458.9		2	Ce2	329.1		2	Pr2	457.3		2	Pr2	328.5
2 Snd 342.1 2 Sn2 342.8 2 Sn4 32.8 2 Sn2 341.3 2 Sn4 338.3 2 Sn2 340.0 1 Sn6 349.5 1 La3 356.8 1 Sn6 349.0 1 Ce1 344.1 2 Net 355.6 1 Pd2 268.4 2 Pd1 352.8 1 Pd2 268.4 2 Pd1 352.6 1 Pd2 268.7 2 Pd3 365.7 1 Pd2 268.7 2 Pd3 365.7 1 Pd4 386.7 2 Pd3 385.7 2 Pd3 365.7	La3:	2	Sn2	337.7		2	Sn5	337.3	Ce3:	2	Sn2	335.3		2	Sn5	335.9	Pr3:	2	Sn2	334.8		2	Sn5	334.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	Sn4	342.1		2	Sn2	342.8		2	Sn4	339.4		2	Sn2	341.3		2	Sn4	338.3		2	Sn2	340.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Pd2	348.1		1	La1	349.5		2	Pd2	344.9		1	Ce1	348.1		2	Pd2	343.2		1	Pr1	348.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	Sn6	349.5	G 4	1	La3	356.8		1	Sn6	349.0	C 4	1	Ce3	356.2		1	Sn6	349.0	C 4	1	Pr3	355.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	Sni	352.1	Sn4:	1	Pd3	262.2		1	Sni	351.5	Sn4:	1	Pd3	261.3		1	Sni	351.2	Sn4:	1	Pd3	261.5
1 313 300.5 1 14 313 300.5 2 14 144 203.0 1 1313 303.0 1 144 206.0 1 316 303.0 1 144 206.0 1 316 303.0 1 144 206.0 1 316 303.0 1 144 206.0 1 316 303.0 1 144 206.0 1 143 303.0 1 144 206.0 2 283 304.1 2 263 304.1 2 505 1 Pd4 385.7 2 Pr1 341.3 1 La1 457.9 1 Pd2 268.3 1 Pd1 256.5 1 Pd2 268.3 1 Pr1 451.9 1 Pd2 268.7 1 1 Sn5 258.8 2 Sn3 37.7 Pd1 Sn5 1 Pd3 268.7 2 Ce1 37.7 1 Sn5 25.4 2 Sn3 34.8 1 Sn2 270.1 2		2 1	Pul Sn2	354.0		1		270.7		2 1	Pul Sn2	303.3		1		200.4		2 1	Pul Sn2	332.8 255.6		1		269.0
2 Sn5 372.6 2 Lal 342.1 2 Sn5 370.2 2 Ce3 339.4 2 Sn5 369.5 2 Pr3 338.3 1 Pd4 384.8 2 Lal 345.7 1 Pd4 384.1 2 Ce1 342.8 1 Pd4 385.7 2 Pr3 338.3 1 La2 419.7 Sn5 1 Pd1 256.5 1 Pr2 414.9 Sn5 1 Pd1 256.5 1 Pr2 414.9 Sn5 1 Pd2 267.1 2 La3 462.4 1 Pd3 270.4 2 Ce3 458.9 1 Pd3 269.5 2 Pr3 457.3 1 Pd2 267.1 1 Sn5 256.5 2 Sn3 335.9 Pd1 1 Sn5 256.5 2 Sn3 335.9 Pd1 1 Sn5 256.5 2 Sn6 271.8 2 Sn1 336.5 1 Pd2 268.7 1 Sn6 271		2	Pd3	365 1		2	La2	230.5		2	Pd3	363 5		2	ru4 Co2	209.0		2	Pd3	3623		2	Fu4 Dr9	200.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	Sn5	372.6		2	La2	342.1		2	Sn5	370.2		2	Ce3	339.4		2	Sn5	369.5		2	Pr3	338.3
1 La2 419.7 Sn5: 1 Pd1 258.8 1 Ce2 417.2 Sn5: 1 Pd1 257.4 1 Pd2 268.3 1 P1 414.9 Sn5: 1 Pd1 257.4 1 La1 457.9 1 Pd3 269.3 1 Ce1 458.9 1 Pd2 268.3 1 P1 451.9 1 Pd3 267.1 1 La1 479.3 2 Sn1 330.5 1 Ce1 479.4 2 Sn1 330.5 1 P11 478.8 2 Sn3 337.3 Pd1 1 Sn5 2 Sn3 335.9 Pd1 1 Sn5 2 Sn3 335.9 Pd1 1 Sn5 2 Sn3 335.9 Pd1 1 Sn5 3 35.9 Pd1 1 Sn5 1 Sn6 2 Sn5 1 Sn6 1 Sn5 1 Sn5 1 Sn5 1 Sn5 1 Sn5 1 Sn5 2 Sn5		1	Pd4	384.8		2	La1	345.7		1	Pd4	384.1		2	Ce1	342.8		1	Pd4	385.7		$\tilde{2}$	Pr1	341.3
1La1457.91Pd2269.31Ce1453.61Pd2268.31Pr1451.91Pd2267.12La3462.41Pd3270.42Ce3458.91Pd3260.52Pd3357.31Pd3268.71Pd3330.51Pd1457.31Pd3268.7Pd11La1479.32Sn3337.3Pd1:11Ce1479.42Sn1330.51Pd1157.6257.42Sn3335.9Pd1:1Sn5256.42Sn3335.9Pd1:1Sn5257.42Sn3335.9Pd1:1Sn5257.42Sn3357.677.11Sn5267.11Pd2267.1377.61Sn2269.32Pd1377.677.61Sn5267.11S		1	La2	419.7	Sn5:	1	Pd1	258.8		1	Ce2	417.2	Sn5:	1	Pd1	256.5		1	Pr2	414.9	Sn5:	1	Pd1	255.4
2La3462.41Pd3270.42Ce3458.91Pd3269.52Pr3457.31Pd3268.71La1479.32Sn1330.51Ce1479.42Sn1330.51F1478.82Sn1329.5Pd11Sn5258.82Sn3337.3Pd1:1Sn5256.52Sn3335.9Pd1:1Sn2250.42Sn3334.8Pd1Sn6271.41La2357.41Sn6270.01Ce2366.51Sn6271.82P13369.62Sn6271.41La2367.41Sn6271.92Ce3370.22Sn6271.82P13369.52La1345.7Sn61Pd4264.32Ce1344.2Sn61Pd4264.12Ce3353.31Pd1270.02Sn6271.82Pd3369.52La1345.7Sn631.4P142Ce3353.31Pd1270.02Sn6271.82Sn6363.51Pd1270.02Sn1361.52Pd1271.82Sn1263.1P323.2Sn121.4Sn52Sn1264.12Sn22Sn1261.52Sn2<		1	La1	457.9		1	Pd2	269.3		1	Ce1	453.6		1	Pd2	268.3		1	Pr1	451.9		1	Pd2	267.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	La3	462.4		1	Pd3	270.4		2	Ce3	458.9		1	Pd3	269.5		2	Pr3	457.3		1	Pd3	268.7
Pd1: 1 Sn5 258.8 2 Sn3 337.3 Pd1: 1 Sn5 256.5 2 Sn3 335.9 Pd1: 1 Sn5 255.4 2 Sn3 337.6 2 Sn5 268.7 1 Sn6 271.8 2 Pn3 369.5 2 La1 345.7 Sn6: 1 Pd4 264.3 2 Sn6 370.2 2 Sn6 271.8 2 Pn3 352.8 1 Pd4 264.1 2 La3 354.0 1 Pd1 271.4 2 Ce3 353.3 1 Pd1 271.8 2		1	La1	479.3		2	Sn1	330.5	_	1	Ce1	479.4		2	Sn1	330.5	_	1	Pr1	478.8		2	Sn1	329.5
1 Sn2 270.1 2 La1 399.4 1 Sn2 268.7 2 Ce1 357.7 1 Sn2 269.3 2 Pr1 357.6 1 Sn6 271.4 1 La2 367.4 1 Sn6 270.0 1 Ce2 366.5 1 Sn6 270.1 1 Pr2 366.0 2 Sn6 271.4 1 La2 367.4 1 Sn6 270.0 1 Sn2 269.3 70 1 Pr3 366.0 1 Pr3 366.0 1 Pr3 366.0 1 Pr3 369.5 2 Pr3 352.8 1 Pd4 264.1 264.1 267.1 2 Sn1 266.3 2 Sn6 311.2 1 Sn5 267.1 2 Sn6 309.1 2 Sn6 301.1 1 Sn5 260.9 2 Sn6 301.2 1 Sn6 309.1 2 Sn6 309.1 2 Sn2 267.1 2 Sn2 Sn2.2 Sn2 Sn2 <t< td=""><td>Pd1:</td><td>1</td><td>Sn5</td><td>258.8</td><td></td><td>2</td><td>Sn3</td><td>337.3</td><td>Pd1:</td><td>1</td><td>Sn5</td><td>256.5</td><td></td><td>2</td><td>Sn3</td><td>335.9</td><td>Pd1:</td><td>1</td><td>Sn5</td><td>255.4</td><td></td><td>2</td><td>Sn3</td><td>334.8</td></t<>	Pd1:	1	Sn5	258.8		2	Sn3	337.3	Pd1:	1	Sn5	256.5		2	Sn3	335.9	Pd1:	1	Sn5	255.4		2	Sn3	334.8
1 Sn6 271.4 1 La2 307.4 1 Sn6 270.0 1 Ce2 306.3 1 Sn6 270.1 1 Pr2 360.0 2 Sn6 274.2 2 La3 372.6 2 Sn6 271.9 2 Ce3 370.2 2 Sn6 271.8 2 Pr3 369.5 2 La3 354.0 1 Pd1 271.4 2 Ce3 353.3 1 Pd1 264.5 2 Pr1 342.1 Sn6:1 Pd4 264.1 2 La3 354.0 1 Pd1 271.4 2 Ce3 353.3 1 Pd1 270.0 2 Pr3 352.8 1 Pd4 264.1 1 Sn5 269.3 2 Sn6 314.3 1 Sn5 268.3 2 Sn6 311.2 1 Sn1 287.3 1 Pd3 287.3 1 Pd3 287.3 1 Pd3 287.3 1 Sn1 284.5 1 Ce1 348.0 <		1	Snz	2/0.1		2	Lai	359.4		1	Snz	268.7		2	Cel	357.7		1	Snz	269.3		2	PrI Drg	357.6
2 Sind 2/14.2 2 Las 3/2.0 2 Ce1 3/4.2 Sind 2/1.6 2 Find 2/1.6 2 Sind 2/1.6 2 Find 2/1.6 2 Find 2/1.6 2 Find 2/1.6 2 Sind 2/1.6 2/1.6 2 Sind 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6 2/1.6		1	SIIO	271.4		1	La2	307.4		1	SIIO	270.0		1	Cez	300.3		1	SIIO	271.0		1	Pr2	300.0
2 Lai 340.7 540.7 1 1041 264.5 2 1 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.5 1 14 204.7 1 14 204.7 2 1 15 2 14 270.1 2 14 270.1 2 14 270.1 2 14 270.1 2 1 18 270.1 2 2 18.0 1 18.0 1 18.0 1 14 270.1 2 1 18.0 1 18.0 1 18.0 1 17.1 2 17.1 2 18.0 1 17.1 2 17.1 2 17.1 2		2	La1	2/4.2	Sn6	2 1	Ed3	264.3		2		211.9	Sn6	2 1	Pd4	264 5		2	Dr1	2/1.0	Snfe	2 1	PdA	264 1
Pd2: 2 Sn1 263.1 2 Pd1 274.2 Pd2: 2 Sn1 261.9 2 Pd1 271.8 Pd2: 2 Sn1 261.9 2 Pd1 271.8 Pd2: 2 Sn1 261.9 2 Pd1 271.8 Pd2: 2 Sn1 261.9 2 Sn1 21.9 Pd2: 2 Sn1 261.9 2 Sn1 21.9 Pd2: 2 Sn1 261.9 1 Sn2 261.9 1 Sn2 261.9		2	La3	354.0	5110.	1	Pd1	2714		2	Ce3	353.3	5110.	1	Pd1	270 0		2	Pr3	352.8	5110.	1	Pd1	2701
1 Sn5 269.3 2 Sn6 314.3 1 Sn5 268.3 2 Sn6 311.2 1 Sn5 267.1 2 Sn6 309.1 1 Sn4 270.6 2 Sn2 323.1 1 Sn4 268.4 2 Sn2 321.7 1 Sn4 267.2 2 Sn2 320.9 1 Sn1 287.3 1 La3 349.5 1 Sn1 284.5 1 Ce1 348.0 1 Sn1 283.5 1 Pr1 346.4 2 La2 341.2 1 La1 349.7 2 Ce2 339.7 1 Ce3 349.0 2 Pr2 338.7 1 Pr3 349.0 2 La3 348.1 2 La1 368.7 2 Ce3 344.9 2 Ce1 368.7 2 Pr3 343.2 2 Pr1 369.1 1 La2 355.1 1 Ce2 354.5 1 Pr2 355.4 1 Sn4 261	Pd2:	$\tilde{2}$	Sn1	263.1		2	Pd1	274.2	Pd2:	2	Sn1	261.9		2	Pd1	271.9	Pd2:	$\tilde{2}$	Sn1	261.5		2	Pd1	271.8
1 Sn4 270.6 2 Sn2 323.1 1 Sn4 268.4 2 Sn2 321.7 1 Sn4 267.2 2 Sn2 320.9 1 Sn1 287.3 1 La3 349.5 1 Sn1 284.5 1 Ce1 348.0 1 Sn1 283.5 1 Pr1 346.4 2 La2 341.2 1 La1 349.7 2 Ce2 339.7 1 Ce3 349.0 2 Pr2 338.7 1 Pr3 349.0 2 La3 348.1 2 La1 368.7 2 Ce2 339.7 1 Ce3 349.0 2 Pr2 338.7 1 Pr3 349.0 1 La2 355.1 - 1 Ce2 354.5 - 1 Pr2 355.4 - Pr3 343.2 2 Pr1 369.1 1 La2 355.1 - Pd3: 2 Sn3 258.6 - Pd3: 2 Sn3 257.9 <td></td> <td>1</td> <td>Sn5</td> <td>269.3</td> <td></td> <td>2</td> <td>Sn6</td> <td>314.3</td> <td></td> <td>1</td> <td>Sn5</td> <td>268.3</td> <td></td> <td>2</td> <td>Sn6</td> <td>311.2</td> <td></td> <td>1</td> <td>Sn5</td> <td>267.1</td> <td></td> <td>2</td> <td>Sn6</td> <td>309.1</td>		1	Sn5	269.3		2	Sn6	314.3		1	Sn5	268.3		2	Sn6	311.2		1	Sn5	267.1		2	Sn6	309.1
1 Sn1 287.3 1 La3 349.5 1 Sn1 284.5 1 Ce1 348.0 1 Sn1 283.5 1 Pr1 346.4 2 La2 341.2 1 La1 349.7 2 Ce2 339.7 1 Ce3 349.0 2 Pr2 338.7 1 Pr3 349.0 2 La3 348.1 2 La1 368.7 2 Ce3 344.9 2 Ce1 368.7 2 Pr3 343.2 2 Pr1 369.1 1 La2 355.1 I Ce2 354.5 I Pr2 355.4 I Pr3 349.0 2 Sn3 25.8 Pr3 365.4 I Pr3 369.1 I Sn4 2 Sn3 257.9 I Sn4 2 Sn3 257.9 I Sn4 261.3 I Sn5 268.7 I Sn5 268.7 I Sn5 268.7 I Sn5 2 Sn4 I Sn5 272.4 I		1	Sn4	270.6		2	Sn2	323.1		1	Sn4	268.4		2	Sn2	321.7		1	Sn4	267.2		2	Sn2	320.9
2 La2 341.2 1 La1 349.7 2 Ce2 339.7 1 Ce3 349.0 2 Pr2 338.7 1 Pr3 349.0 2 La3 348.1 2 La1 368.7 2 Ce3 344.9 2 Ce1 368.7 2 Pr3 343.2 2 Pr1 369.1 1 La2 355.1 1 Ce2 354.5 1 Pr2 355.4 2 Sn3 259.8 Pd3: 2 Sn3 257.9 2 Sn3 257.9 2 Sn3 257.9 2 Sn3 257.9 2 Sn3 261.5 1 Sn4 261.5 1 Sn4 261.5 1 Sn5 269.5 1 Sn5 268.7 1 Sn5 272.4 4 4 4 4 4 4 4 4 4 4 4 4 </td <td></td> <td>1</td> <td>Sn1</td> <td>287.3</td> <td></td> <td>1</td> <td>La3</td> <td>349.5</td> <td></td> <td>1</td> <td>Sn1</td> <td>284.5</td> <td></td> <td>1</td> <td>Ce1</td> <td>348.0</td> <td></td> <td>1</td> <td>Sn1</td> <td>283.5</td> <td></td> <td>1</td> <td>Pr1</td> <td>346.4</td>		1	Sn1	287.3		1	La3	349.5		1	Sn1	284.5		1	Ce1	348.0		1	Sn1	283.5		1	Pr1	346.4
2 La3 348.1 2 La1 368.7 2 Ce3 344.9 2 Ce1 368.7 2 Pr3 343.2 2 Pr1 369.1 1 La2 355.1 1 Ce2 354.5 1 Pr2 355.4 Pd3: 2 Sn3 259.8 Pd3: 2 Sn3 258.6 Pd3: 2 Sn3 257.9 1 Sn4 262.2 1 Sn4 261.3 1 Sn4 261.5 1 Sn4 261.5 1 Sn5 268.7 1 Sn5 272.4 1 Sn4 2 Ce1 348.5 2 Pr1 348.1 1 La2 356.0 1 Sn5 2 Pr1 348.1 1 1 La2 365.4 2 Ce3 363.5 2 Pr3 362.3 362.3 1 1 <td></td> <td>2</td> <td>La2</td> <td>341.2</td> <td></td> <td>1</td> <td>La1</td> <td>349.7</td> <td></td> <td>2</td> <td>Ce2</td> <td>339.7</td> <td></td> <td>1</td> <td>Ce3</td> <td>349.0</td> <td></td> <td>2</td> <td>Pr2</td> <td>338.7</td> <td></td> <td>1</td> <td>Pr3</td> <td>349.0</td>		2	La2	341.2		1	La1	349.7		2	Ce2	339.7		1	Ce3	349.0		2	Pr2	338.7		1	Pr3	349.0
1 La2 355.1 1 Ce2 354.5 1 Pr2 355.4 Pd3: 2 Sn3 259.8 Pd3: 2 Sn3 258.6 Pd3: 2 Sn3 257.9 1 Sn4 262.2 1 Sn4 261.3 1 Sn4 261.5 1 Sn5 270.4 1 Sn5 269.5 1 Sn5 268.7 1 Sn2 274.0 1 Sn2 273.4 1 Sn2 272.4 2 La1 351.8 2 Ce1 348.5 2 Pr1 348.1 1 La2 356.0 1 Ce2 354.5 1 Pr2 354.4 2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3		2	La3	348.1		2	La1	368.7		2	Ce3	344.9		2	Ce1	368.7		2	Pr3	343.2		2	Pr1	369.1
Pd3: 2 Sn3 259.8 Pd3: 2 Sn3 258.6 Pd3: 2 Sn3 257.9 1 Sn4 262.2 1 Sn4 261.3 1 Sn4 261.5 1 Sn5 270.4 1 Sn5 269.5 1 Sn5 268.7 1 Sn2 274.0 1 Sn2 273.4 1 Sn2 272.4 2 La1 351.8 2 Ce1 348.5 2 Pr1 348.1 1 La2 356.0 1 Ce2 354.5 1 Pr2 354.4 2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3	D 10	1	La2	355.1					D 10	1	Ce2	354.5					D 10	1	Pr2	355.4				
1 Sn4 202.2 1 Sn4 201.3 1 Sn4 201.3 1 Sn5 270.4 1 Sn5 269.5 1 Sn5 268.7 1 Sn2 273.4 1 Sn2 272.4 2 La1 351.8 2 Ce1 348.5 2 Pr1 348.1 1 La2 356.0 1 Ce2 354.5 1 Pr2 354.4 2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3	Pd3:	2	Sn3	259.8					Pd3:	2	Sn3	258.6					Pd3:	2	Sn3	257.9				
1 Sn2 274.0 1 Sn2 273.4 1 Sn2 272.4 2 La1 351.8 2 Cel 348.5 2 Prl 348.1 1 La2 356.0 1 Ce2 354.5 1 Pr2 354.4 2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3		1	5114 Sn5	202.2 270 1						1	S114 Sn5	260 5						1	S114 Sn5	262 7				
2 La1 351.8 2 Ce1 348.5 2 Pr1 348.1 1 La2 356.0 1 Ce2 354.5 1 Pr2 354.4 2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3		1	Sn2	274 0						1	Sn2	2734						1	Sn2	272.4				
1 La2 356.0 1 Ce2 354.5 1 Pr2 354.4 2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3		2	La1	351.8						2	Ce1	348.5						2	Pr1	348.1				
2 La3 365.4 2 Ce3 363.5 2 Pr3 362.3		1	La2	356.0						ĩ	Ce2	354.5						ĩ	Pr2	354.4				
		2	La3	365.4						2	Ce3	363.5						2	Pr3	362.3				

^a All distances of the first coordination spheres are listed. Standard deviations are all equal or less than 0.4 pm.

of the Ce^{3+} ions, but also the beginning of short-range magnetic fluctuations. Such crystal field effects may also account for the broad shoulder in the electric resistivity at high temperature (see Figure 4 below).

The magnetic behavior of $Ce_3Pd_4Sn_6$ and $Pr_3Pd_4Sn_6$ at low temperature and low external fields (0.1 T) is presented in the inserts of Figure 2. Down to 2 K no indication for magnetic ordering could be observed.

The magnetization data are plotted in Figure 3. At 50 K the magnetization isotherms of $Ce_3Pd_4Sn_6$ and Pr_3 -

Pd₄Sn₆ are almost linear as expected for a paramagnetic compound. The isotherms then show some curvature at 2 K, however, with different saturation magnetization values at 5.5 T: 0.78(1) $\mu_{\rm B}$ /Ce and 0.39(1) $\mu_{\rm B}$ /Pr, significantly smaller than the theoretical saturation magnetizations for Ce³⁺ and Pr³⁺ of 2.14 $\mu_{\rm B}$ /Ce and 3.20 $\mu_{\rm B}$ /Pr. Pr₃Pd₄Sn₆ most likely remains paramagnetic down to very low temperatures as is also manifested by the very small paramagnetic Curie temperature of 3(2) K. Ce₃Pd₄Sn₆ shows a stronger increase of the

Figure 1. Temperature dependence of the magnetic susceptibility of $La_3Pd_4Sn_6$, measured at a flux density of 3 T.

Figure 2. Temperature dependence of the inverse magnetic susceptibilities of $Ce_3Pd_4Sn_6$ and $Pr_3Pd_4Sn_6$ measured at 1 and 3 T. The behavior at low temperature and low flux density (0.1 T) is shown in the inserts.

magnetic moment at 2 K. This may be attributed to a partial antiparallel to parallel spin alignment. The reduced value of the saturation moment is most likely due to crystal field splitting effects on the $J=5/_2$ ground state of the Ce³⁺ ion. Similar moments in the range of $1 \mu_{\rm B}/{\rm Ce}$ atom have also been observed for similar ternary cerium intermetallics, i.e., 0.75(2) $\mu_{\rm B}$ for CeRhSn₂,²⁰ 1.09(5) $\mu_{\rm B}$ for CeAuGe,²⁶ and even 0.64 $\mu_{\rm B}/{\rm Ce}$ for CePtSb.²⁷ Neutron diffraction experiments may be helpful in future to further elucidate the nature of magnetic ordering in this cerium stannide.

Electrical Properties. The temperature dependence of the specific resistivities of La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆ is displayed in Figure 4. The specific resistivity of all three stannides decreases with decreasing temperature as expected for a metal. The room-temperature values are $80 \pm 20 \ \mu\Omega \ cm (La_3Pd_4Sn_6)$, $65 \pm 20 \ \mu\Omega \ cm (Ce_3Pd_4Sn_6)$, and $110 \pm 20 \ \mu\Omega \ cm (Pr_3Pd_4Sn_6)$. The relatively large error limit accounts for the different values obtained for several irregularly shaped samples. At 4.2 K, the specific resistivity has dropped to 16 ± 5

Figure 3. Field dependence of the magnetic moments of Ce_3 -Pd₄Sn₆ and Pr₃Pd₄Sn₆ at 2.2 and 50 K.

Figure 4. Temperature dependence of the specific resistivities of $La_3Pd_4Sn_6$, $Ce_3Pd_4Sn_6$, and $Pr_3Pd_4Sn_6$.

 $\mu\Omega$ cm (La₃Pd₄Sn₆), 25 \pm 5 $\mu\Omega$ cm (Ce₃Pd₄Sn₆), and 14 \pm 5 $\mu\Omega$ cm (Pr₃Pd₄Sn₆), resulting in resistivity ratios $\rho(4.2~{\rm K})/\rho(300~{\rm K})$ of about 0.20 (La₃Pd₄Sn₆), 0.39 (Ce₃-Pd₄Sn₆), and 0.13 (Pr₃Pd₄Sn₆). Features worthy of note in the plot of Ce₃Pd₄Sn₆ are the broad region of negative curvature between 40 and 300 K and a broad minimum near 16 K. The latter was also observed for CeRhSn₂,²⁰ CePdSn^{9,28} and Ce₃Pd₆Sb₅²⁹ and may be due to the presence of some Kondo-like interactions, however, an explanation of increased scattering due to increased magnetic fluctuations at low temperature is also possible.

¹¹⁹Sn Mössbauer Spectroscopy. The room temperature ¹¹⁹Sn Mössbauer spectra of La₃Pd₄Sn₆, Ce₃Pd₄-Sn₆, and Pr₃Pd₄Sn₆ are presented in Figure 5 together with theoretical transmission integral fits. The fitting parameters are listed in Table 4. The spectra are more or less equal. We therefore discuss only the lanthanum compound and refer to Table 4 for the other data. The

⁽²⁶⁾ Pöttgen, R.; Borrmann, H.; Kremer, R. K. J. Magn. Magn. Mater. **1996**, *152*, 196.

⁽²⁷⁾ Rainford, B. D.; Adroja, D. T. Physica B 1994, 194/196, 365.

⁽²⁸⁾ Malik, S. K.; Adroja, D. T.; Dhar, S. K.; Vijayaraghavan, R.; Padalia, B. D. *Phys. Rev. B* **1989**, *40*, 2414.

⁽²⁹⁾ Gordon, R. A.; DiSalvo, F. J.; Pöttgen, R. J. Alloys Compd. 1995, 228, 16.

Figure 5. Experimental and simulated ^{119}Sn Mössbauer spectra of La_3Pd_4Sn_6, Ce_3Pd_4Sn_6, and Pr_3Pd_4Sn_6 at 300 K relative to Ca^{119}SnO_3.

Table 4. Fitting Parameters of ¹¹⁹Sn Mössbauer Measurements (300 K) of La₃Pd₄Sn₆, Ce₃Pd₄Sn₆, and Pr₃Pd₄Sn₆^a

compound	Γ ₁ (mm/s)	δ_1 (mm/s)	$\Delta E_{\rm Q1}$ (mm/s)	Γ ₂ (mm/s)	δ_2 (mm/s)	ratio ^b
$\begin{array}{c} La_3Pd_4Sn_6\\ Ce_3Pd_4Sn_6\\ Pr_3Pd_4Sn_6 \end{array}$	0.87(2)	1.94(2)	1.11(2)	0.88(2)	1.88(2)	5.2:1
	0.85(2)	1.93(2)	1.13(2)	0.97(2)	1.87(2)	4.1:1
	0.85(2)	1.92(2)	1.12(2)	0.98(2)	1.85(2)	4.8:1

^{*a*} Abbreviations: Γ , experimental line width; δ , isomer shift; ΔE_Q , electric field gradient. The indices 1 and 2 refer to the doublet and singlet signals, respectively. ^{*b*} Ratio of the areas of both signals (doublet:singlet).

spectrum shows a superposition of two different signals: a singlet at $\delta_2 = 1.88(2)$ mm/s with a line width of $\Gamma_2 = 0.88(2)$ mm/s and a second signal at $\delta_1 = 1.94$ -(2) mm/s with a line width of $\Gamma_1 = 0.87(2)$ mm/s, subject to quadrupole splitting of $\Delta E_{Q1} = 1.11(2)$ mm/s. The integrated peak areas (doublet:singlet) are about 5.2: 1. While only the Sn4 atoms have no tin neighbors, the Sn1, Sn2, Sn3, Sn5, and Sn6 atoms have at least one short Sn-Sn contact. From a crystal chemical point of view the tin types have a ratio of 5:1 which is in excellent agreement with the Mössbauer spectra. We thus observed the singlet for the Sn4 site and the doublet for the remaining tin atoms. Since the coordinations of the Sn1, Sn2, Sn3, Sn5, and Sn6 atoms are very similar, the respective Mössbauer signals are most likely indistinguishable. Thus, the doublet is a superimposed signal of five very similar doublets. Such a composed ¹¹⁹Sn Mössbauer spectrum was observed recently also for the stannide YbAgSn³⁰ which contains a Sn₂ pair and an *isolated* tin atom.

Crystal Chemistry and Chemical Bonding. The ternary stannides $La_3Pd_4Sn_6$, $Ce_3Pd_4Sn_6$, and $Pr_3Pd_4Sn_6$ crystallize with a new orthorhombic structure type which we have first determined for the cerium compound. We therefore call this a $Ce_3Pd_4Sn_6$ type structure. In Figure 6 we present a projection of the $Ce_3Pd_4Sn_6$ structure onto the *xz* plane. When we quote interatomic distances in the following discussion, they refer to the cerium compound.

Three crystallographically different cerium positions with high coordination numbers (CN) occur in the

Figure 6. Projections of the crystal structures of $Ce_3Pd_4Sn_6$, $Y_3Pt_4Ge_6$, and $CeRhSn_2$ onto the *xz* and *yz* planes, respectively. The three-dimensional $[Pd_4Sn_6]$, $[Pt_4Ge_6]$, and $[RhSn_2]$ polyanions are outlined. Some Pd_2Sn_2 , Pt_2Ge_2 , and Rh_2Sn_2 parallelograms are shaded to show the characteristic connectivities of these basic structural units. The different sites in the structure of $Ce_3Pd_4Sn_6$ are given by arabic numbers. The cerium (yttrium), transition metal, and tin (germanium) atoms are drawn as gray, black, and open circles, respectively.

structure of Ce₃Pd₄Sn₆: 5Ce + 7Pd + 9Sn for Ce₁, 4Ce + 6Pd + 9Sn for Ce₂, and 5Ce + 7Pd + 9Sn for Ce₃. These high coordination numbers are typical for such intermetallic compounds. The closest Ce–Ce distances range from 409 to 479 pm, much longer than in fcc cerium³¹ where each cerium atom has 12 cerium neighbors at 365 pm. Although the Ce–Ce distances in Ce₃-Pd₄Sn₆ are quite long and these contacts are most likely not bonding, the respective cerium atoms complete the coordination shells as frequently observed for such compounds.^{20,32,33}

The Ce–Pd distances range from 325 to 384 pm, significantly longer than the sum of the metallic radii³⁴ of 320 pm for CN 12, indicating only negligible Ce–Pd interactions. Also in the structure of Ce₃Pd₆Sb₅²⁹ such long Ce–Pd distances (327–367 pm) occur. The Ce–Sn

⁽³⁰⁾ Pöttgen, R.; Arpe, P. E.; Felser, C.; Kussmann, D.; Müllmann, R.; Mosel, B. D.; Künnen, B.; Kotzyba, G. *J. Solid State Chem.* **1999**, *145*, 668.

⁽³¹⁾ Donohue, J. *The Structures of the Elements*; Wiley: New York, 1974.

 ⁽³²⁾ Hoffmann, R.-D.; Pöttgen, R.; Rosenhahn, C.; Mosel, B. D.;
 Künnen, B.; Kotzyba, G. J. Solid State Chem. 1999, 145, 283.
 (33) Hoffmann, R.-D.; Pöttgen, R. Z. Anorg. Allg. Chem. 1999, 625,

⁽³³⁾ Hoffmann, R.-D.; Pottgen, R. Z. Anorg. Allg. Chem. **1999**, 625, 994.

⁽³⁴⁾ Teatum, E.; Gschneidner, K., Jr.; Waber, J. Report LA-2345, U.S. Department of Commerce: Washington, DC, 1960.

Three-Dimensional [Pd₄Sn₆] Polyanion

distances range from 325 to 370 pm with an average value of 346 pm, in perfect agreement with the sum of the metallic radii³⁴ for cerium and tin of 345 pm. Also in CeRhSn₂,²⁰ an average Ce–Sn distance of 343 pm has been observed. The shortest Ce–Sn distances occur for the Ce2 site. Here, the six nearest tin neighbors are at Ce–Sn distances from 325 to 329 pm. These Ce–Sn contacts may be considered as weakly bonding, similar to CeRhSn₂²⁰ and CeRu₄Sn₆.¹⁹

The most striking feature of the Ce₃Pd₄Sn₆ structure are remarkably short Pd–Sn distances. Each palladium atom has a distorted, square-pyramidal coordination of tin neighbors at Pd–Sn distances ranging from 257 to 285 pm with an average value of 268 pm, in perfect agreement with the sum of Pauling's single bond radii of 268 pm.³⁵ We therefore assume strong palladium– tin bonding in the structure of Ce₃Pd₄Sn₆. This compares well with a recent extended Hückel calculation for CaPdSn₂³⁶ with MgCuAl₂ type structure, where the strongest bonding interactions were found for the Pd– Sn contacts followed by Sn–Sn.

Six crystallographically different tin sites occur in the structure of Ce₃Pd₄Sn₆ with Sn–Sn distances ranging from 302 to 353 pm. The Sn4 position is an exception. This tin atom has only palladium and cerium neighbors. The shorter Sn1–Sn3 (302 pm), Sn6–Sn6 (311 pm), and Sn2–Sn6 (322 pm) contacts may be considered as at least weakly bonding. These Sn–Sn distances compare well with those in β -tin³¹ (4 × 302 pm; 2 × 318 pm).

In view of the strongly bonding Pd–Sn and the at least weakly bonding Sn–Sn interactions, also the structure of $Ce_3Pd_4Sn_6$ can best be described by a threedimensional $[Pd_4Sn_6]$ polyanion in which the cerium atoms fill distorted pentagonal and hexagonal channels as outlined in Figure 6. The basic structural motif of the polyanion are the four $PdSn_5$ units which are condensed with each other via common tin atoms and via Sn-Sn bonds. Considering the trivalent character of the cerium atoms (see magnetic data), the formula of $Ce_3Pd_4Sn_6$ can to a first approximation be written as $[3Ce^{3+}]^{9+}[Pd_4Sn_6]^{9-}$, where the superscripts are formal charges.

The structure of Ce₃Pd₄Sn₆ has large similarities with the structures of CeRhSn₂²⁰ and Y₃Pt₄Ge₆.³⁷ Projections of these structures with an emphasis on the [RhSn₂] and [Pt₄Ge₆] polyanions are presented in Figure 6. All of these polyanions are composed of edge- and cornersharing Pd₂Sn₂, Rh₂Sn₂, and Pt₂Ge₂ parallelograms. Such parallelograms also occur in the structures of SrPtIn³³ (TiNiSi type), CaAuIn₂³⁸ (MgCuAl₂ type), Sr₂-Au₃In₄³² (Hf₂Co₄P₃ type), and Ca₂Au₃In₄³³ (YCo₅P₃ type), however, with different connectivities. At first sight these structures look quite different; however, a closer look at the respective polyanions shows that they have all T_2X_2 parallelograms as common structural motifs, leading to a rich crystal chemistry.

Acknowledgment. We are indebted to Professor Dr. W. Jeitschko and to Professor Dr. H. Eckert for their interest and steady support of this work. We also thank K. Wagner for the EDX analyses, Dipl.-Ing. U. Ch. Rodewald for the data collections, and Dr. W. Gerhartz (Degussa AG) for a generous gift of palladium powder. Financial support by the Bennigsen-Foerder-Programm of the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen, by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie is gratefully acknowledged.

CM991142Z

⁽³⁵⁾ Pauling, L. *The Nature of the Chemical Bond and the Structures of Molecules and Solids*, Cornell University Press: Ithaca, NY, 1960.

⁽³⁶⁾ Hoffmann, R.-D.; Kussmann, D.; Rodewald, U. Ch.; Pöttgen, R.; Rosenhahn, C.; Mosel, B. D. Z. Naturforsch. B **1999**, *54*, 709.

⁽³⁷⁾ Venturini, G.; Malaman, B. J. Less-Common Met. 1990, 167, 45.

⁽³⁸⁾ Hoffmann, R.-D.; Pöttgen, R.; Landrum, G. A.; Dronskowski, R.; Künnen, B.; Kotzyba, G. Z. Anorg. Allg. Chem. **1999**, 625, 789.